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Abstract
Intermodulation atomic force microscopy (ImAFM) is a mode of dynamic atomic force microscopy that probes the nonlinear

tip–surface force by measurement of the mixing of multiple modes in a frequency comb. A high-quality factor cantilever resonance

and a suitable drive comb will result in tip motion described by a narrow-band frequency comb. We show, by a separation of time

scales, that such motion is equivalent to rapid oscillations at the cantilever resonance with a slow amplitude and phase or frequency

modulation. With this time-domain perspective, we analyze single oscillation cycles in ImAFM to extract the Fourier components

of the tip–surface force that are in-phase with the tip motion (FI) and quadrature to the motion (FQ). Traditionally, these force

components have been considered as a function of the static-probe height only. Here we show that FI and FQ actually depend on

both static-probe height and oscillation amplitude. We demonstrate on simulated data how to reconstruct the amplitude dependence

of FI and FQ from a single ImAFM measurement. Furthermore, we introduce ImAFM approach measurements with which we

reconstruct the full amplitude and probe-height dependence of the force components FI and FQ, providing deeper insight into the

tip–surface interaction. We demonstrate the capabilities of ImAFM approach measurements on a polystyrene polymer surface.
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Introduction
Since its invention [1] atomic force microscopy (AFM) has

developed into one of the most versatile techniques in surface

science. At length scales ranging from micrometers down to the

level of single atoms, AFM-based techniques are used to image

[2-4], measure [5,6] and manipulate matter [7-9] at an interface.

As an imaging tool, the goal of AFM development has been to

increase spatial resolution and minimize the back-action force

from the probe on the sample surface. A major advancement in

this regard was the development of dynamic AFM [10] in which

a sharp tip at the free end of the AFM cantilever oscillates close

to the sample surface, as depicted in Figure 1. In order to

achieve stable oscillatory motion, an external drive force is
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Figure 1: Sketch of the basic experimental setup in narrow-band ImAFM. In the absence of a drive signal the tip is at rest at the static probe height h.
The spectrum of the drive comb consists of two frequency components spaced by Δω and centered at the first flexural resonance frequency ω0 of the
cantilever, which is much higher than the comb base frequency Δω (here ω0 = 600 × Δω). The driven tip oscillates with amplitude A and interacts with
the sample surface. The instantaneous tip position z is measured in the rest frame of the sample surface. The corresponding deflection signal is
detected by an optical lever system and is concentrated to a narrow band around ω0, as the drive signal. In this band, new frequency components
spaced by Δω are present, which are generated by the nonlinear tip–sample interaction Fts. Outside the narrow band at ω0 there is only a small
response in bands at integer multiples of ω0.

applied to the cantilever, which is usually purely sinusoidal in

time with a frequency that is close to the resonance frequency

of the first flexural eigenmode of the cantilever. The high-

quality factor of the resonance ensures that the responding

motion of the tip is approximately sinusoidal in time, with the

same frequency as the drive signal [11,12]. Such periodic

motion is best analyzed in the frequency or Fourier domain,

where the motion is well described by one complex-valued

Fourier coefficient at the drive frequency. This motion has a

corresponding Fourier coefficient of the tip–surface force,

which can be expressed in terms of two real-valued compo-

nents, FI, which is in-phase with the motion, and FQ, which is

quadrature to the motion. At a fixed probe height h above the

surface, the two force quadratures FI and FQ give only qualita-

tive insight into the interaction between the tip and the surface

[13] and most quantitative force reconstruction methods are

based on a measurement of FI and FQ at different h [14-19].

In order to increase the accessible information while imaging

with AFM, a variety methods have been put forward in which

amplitude and phase at more than one frequency are analyzed.

These multifrequency methods can be divided in to two general

groups: those using only Fourier components with frequencies

close to a cantilever resonance, and those that use off-reso-

nance components. Off-resonance techniques typically measure

higher harmonics of the tip motion, which allows for a recon-

struction of time-dependent surface forces acting on the tip. Due

to the lack of transfer gain off resonance, these off-resonance

components have small signal-to-noise ratio and their measure-

ment requires special cantilevers [20], high interaction forces

[21] or highly damped environments [22]. To increase the

number of Fourier components with good signal-to-noise ratio,

on-resonance techniques utilize multiple eigenmodes of the

cantilever [23-26]. However, accurate calibration of higher

cantilever modes remains complicated since additional knowl-

edge about the cantilever is required. Both on- and off-reso-

nance techniques require broad-band detection of the cantilever

motion, which implies a sacrifice in the sensitivity and gain of

the motion-detection system.

To mitigate these problems, we have developed narrow-band

intermodulation AFM (ImAFM), which analyzes the response

only near the first flexural eigenmode. In general ImAFM

utilizes frequency mixing due to the nonlinear tip–surface inter-
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Figure 2: The amplitude spectrum of a narrow band signal as a function of the Fourier index (a) is characterized by a finite number of Fourier compo-
nents in a frequency band around the center frequency  = Δω, in a bandwidth that is given by the integer number ΔN. The spectrum of the
corresponding time-dependent envelope function (b) is obtained by down-shifting the original spectrum in frequency space such that the shifted center
frequency is zero.

action. A drive signal that comprises multiple frequency

components is used for exciting the cantilever, which will ex-

hibit response not only at the drive frequencies, but also at

frequencies that are linear, integer combinations of the drive

frequencies:

(1)

where m1,m2, … ,mM  and ω1,ω2, … ,ωM are the drive

frequencies. These new frequency components are called inter-

modulation products (IMPs) and one usually defines an order

for each IMP that is given by |m1| + |m2| + … + |mM|. If all

frequencies in a signal are integer multiples of a base frequency,

Δω, the signal is called a frequency comb. The nonlinear

tip–surface interaction maps a drive-frequency comb to a

response-frequency comb, both having the same base frequency

Δω. Different drive-frequency combs can be used to place many

response frequency components close to a resonance of the

cantilever where they can be detected with good signal-to-noise

ratio. In general the drive and response frequency combs could

encompass more than one eigenmode of the cantilever. For a

drive signal consisting of only two frequencies symmetrically

placed around the first flexural resonance frequency, as illus-

trated in Figure 1, the response is concentrated in the narrow

band around the first resonance, for which very accurate cali-

bration methods exist [27-29].

In what follows, we will focus on this particular case, which we

call narrow-band ImAFM. However, we want to emphasize that

drive schemes that generate response in more than one

frequency band are also possible. We have previously shown

how the individual amplitudes [26] and phases [30] of the IMPs

in the narrow band around the first flexural resonance can be

used for imaging. Furthermore, a polynomial reconstruction of

the tip–surface force [31,32] and a numerical fit of the parame-

ters of a force model [33] are possible by analysis of the data in

the frequency domain. Here, we consider the meaning of the

narrow-band intermodulation response comb in the time

domain, which leads to a physical interpretation of the inter-

modulation spectrum in terms of the in-phase force component

FI and the quadrature force component FQ.

Results and Discussion
Time-domain interpretation of narrow-band
frequency comb
Figure 2a portrays the amplitudes of the components of a

narrow-band frequency comb. Whereas we only plot the ampli-

tude of each component, it is understood that each component

also has a phase. The frequency comb is characterized by the

center frequency  of the comb, a base frequency Δω and a

finite number N of Fourier components at discrete frequencies.

Without loss of generality, we assume N to be even. The center

frequency  can be described in terms of the ratio 

and the bandwidth of the comb is given by ΔN = N − 1. The N

discrete frequencies ωn in the band are represented by an integer

frequency index n such that

(2)

where n takes consecutive integer values between  and

. In the time domain, the corresponding real-valued

signal x(t) is then given by the Fourier series
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(3)

where  are the complex Fourier components in the narrow

frequency band and the star denotes complex conjugation. The

center frequency  is usually much bigger than the base

frequency Δω,

(4)

Therefore, the time-domain signal x(t) exhibits two different

time scales: a fast time scale Tfast = 2π/  and a slow time scale

Tslow = 2π/Δω. To separate these two time scales, we factor out

a rapidly oscillating term at the frequency  from the Fourier

series in Equation 3,

(5)

(6)

Since N is even, 2  is an odd integer number and we can define

a new sum index

(7)

which increases in steps of Δn' = 2 and the summation limits

become

(8)

(9)

Since N is even and n' increases only in steps of 2, n' can only

take odd values. Additionally, we define new Fourier coeffi-

cients

(10)

such that the signal Fourier series becomes

(11)

We identify the terms in parentheses as the Fourier series of

a complex-valued time-dependent envelope function 

expanded in the base frequency Δω/2,

(12)

and write the original signal x(t) as

(13)

The envelope function  was obtained by down-shifting the

narrow intermodulation frequency band to a center frequency of

zero (see Figure 2). If the maximum frequency in the Fourier

series of  is much smaller than , the envelope function

 varies slowly compared to the term  in Equation 13.

When we represent  by a time-dependent amplitude A(t)

and a time-dependent phase (t), such that

(14)

the signal x(t) is completely described by a modulated oscilla-

tion amplitude and a modulated oscillation phase:

(15)

We would like to emphasize that the narrow-band frequency

comb can also describe amplitude- and frequency-modulated
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signals. For frequency modulation we define an instantaneous

oscillation phase

(16)

and an instantaneous oscillation frequency

(17)

The instantaneous frequency shift δω compared to  is then

simply

(18)

In a small region around the time t' the signal x(t) can be

obtained by a Taylor expansion to first order of the instanta-

neous phase θ:

(19)

Thus, a narrow-band frequency comb can describe signals with

frequency shifts that are periodic in time.

To illustrate the complete description of a narrow-band signal

by its envelope function, Figure 3 shows the spectrum of an

artificially constructed signal with sinusoidally modulated

amplitude and frequency. Typical parameters from AFM exper-

iments have been chosen for the amplitude and frequency

modulation. The spectrum of the signal shown in Figure 3

shows significant amplitudes at discrete frequencies in only a

narrow band around 300 kHz. We down-shift the spectrum to

determine the slowly varying envelope function from which we

compute the time-dependent oscillation amplitude and

frequency, both of which are in excellent agreement with

the actual amplitudes and frequencies used for the signal

generation.

To summarize, we have introduced a time-domain interpreta-

tion of narrow-band frequency combs. If the center frequency of

the band is much higher than the base frequency of the comb,

we can separate a fast and a slow time scale in the time domain.

On the fast time scale the signal rapidly oscillates at the center

frequency. The slow-time-scale dynamics is given by the down-

shifted intermodulation spectrum, which describes a slow

amplitude modulation and a slow phase or frequency modula-

tion of the signal in the time domain.

Figure 3: (a) The amplitude spectrum of an amplitude and frequency
modulated signal. The response is concentrated in a narrow-band
frequency comb with a center frequency much higher than the comb
base frequency. In the time domain (b) the signal rapidly oscillates on
a short time scale and the slow amplitude modulation is clearly visible.
The time-dependent amplitude (c) and frequency (d) reconstructed
from the envelope function are in excellent agreement with the actual
modulation used for the signal generation in the time domain.

Physical interpretation of the tip motion and
force envelope functions in ImAFM
In ImAFM the measured frequency comb corresponds to a

vertical motion z(t) of the tip, which undergoes rapid oscilla-

tions at frequency  with slowly varying amplitude and phase,

(20)
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Figure 4: Sketch of a narrow-band signal. On the slow time scale Tslow the tip motion shows an amplitude modulation. On the fast time scale Tfast the
signal rapidly oscillates. During each oscillation cycle the tip interacts with the surface for the time Tinter during which the oscillation amplitude and
phase are approximately constant.

where h is the static probe height above the surface, and the

amplitude A(t) and the phase (t) are determined from the com-

plex-valued motion envelope function  as

(21)

(22)

The envelope function  was obtained directly from the

measured motion spectrum by using Equation 12.

Knowledge of the cantilever transfer function  and the applied

drive force allows for converting the measured motion spec-

trum into the spectrum of the time-dependent tip–surface force

acting on the tip. However, the force spectrum is incomplete

since higher frequency components of the force are filtered out

from the motion spectrum by the sharply peaked cantilever

transfer function. The time-dependence of the corresponding

partial force signal is described by the force envelope function

:

(23)

where  is determined by applying Equation 12 to the

partial force spectrum. To understand the physical meaning of

the partial force, we analyze the signals at the level of single

rapid oscillation cycles in the time domain. During each oscilla-

tion cycle the tip interacts with the sample surface. This inter-

action is very localized (a few nanometers above the surface)

compared to the oscillation amplitude (tens of nanometers), and

thus the interaction time Tinter is short compared to the fast

oscillation period Tfast, which itself is much shorter than the

period of the beat Tslow (see Figure 4),

(24)

Therefore, amplitude A(t), phase (t) and force envelope func-

tion  can be considered to be constant during each inter-

action cycle, and the motion and the partial force during the i-th

tip oscillation cycle are given by

(25)

(26)

where A(i), Φ(i) and  are constant and are determined at the

time t(i) of the ith lower turning point of the tip motion

(27)

(28)

(29)
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The complete time-dependent tip–surface force during an inter-

action cycle is a force pulse that can be written as a Fourier

series in the oscillation frequency  as

(30)

where the complex Fourier components  fulfill the relation

. Comparison of Equation 26 with Equation 30

yields

(31)

which reveals that the first Fourier component  of the force

pulse during the ith oscillation cycle is given by the force enve-

lope function  determined from the partial force spectrum.

Since each lower motion turning point is associated with a

unique amplitude A(i) we can consider  as a function of the

continuous variable A,

(32)

The amplitude dependence of  can then be uncovered by the

analysis of all oscillation cycles during the time Tslow.

To better relate motion and the force we compute the compo-

nents of  that are in phase with the motion (FI) and quad-

rature to the motion (FQ). For a tip–surface force that only

depends on the instantaneous tip position and velocity,

(33)

we approximate the tip motion to be purely sinusoidal at

frequency  with amplitude A and without an additional phase.

At fixed probe height h, the components FI and FQ are given by

two integral equations

(34)

(35)

With these assumptions FI becomes the so-called virial of the

tip–surface force, which is only affected by the conservative

part of the tip–surface interaction [34], whereas FQ is related to

the energy dissipated by the tip–surface interaction [11]. We

note that, through their dependence on tip position z and

velocity , the force components FI and FQ are functions of

both probe height h and oscillation amplitude A. However, they

are usually considered as being functions of the probe height h

only.

For an ImAFM measurement at fixed probe height, the ampli-

tude dependence of FI and FQ can readily be obtained by

defining a new force envelope function that is phase-shifted

with respect to the motion by the angle :

(36)

which we evaluate as real and imaginary parts at the times of

the lower turning points of the motion

(37)

(38)

With this interpretation of an intermodulation spectrum we are

able to reconstruct the amplitude dependence of the force quad-

ratures FI and FQ, which are independent of details of the tip

motion on the slow time scale. Due to this independence, FI and

FQ are the input quantities for nearly all force spectroscopy

methods in dynamic AFM and thereby they form the basis of

quantitative dynamic AFM.

Force quadrature reconstruction from simu-
lated data
To demonstrate the accuracy of the FI(A) and FQ(A) reconstruc-

tion from ImAFM data we simulate the tip motion in a model

force field. We excite the tip with two frequencies close to the

first flexural resonance frequency of ω0 = 2π · 300 kHz, which

allows us to model the cantilever as a single eigenmode system

for which the tip dynamics are described by an effective

harmonic oscillator equation [35,36]

(39)

where Q = 400 is the quality factor of the resonance, kc =

40 N/m is the mode stiffness h = 20 nm is the static probe

height above the surface. The drive strengths F1 and F2 at the

frequencies ω1 = 2π · 299.75 kHz and ω2 = 2π · 300.25 kHz

are chosen such that in the absence of a tip–surface force,
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Figure 6: Model FI(h,A) and FQ(h,A) maps for the vdW-DMT force with exponential damping introduced in Equation 40. The displayed measurement
paths correspond to a frequency-shift–distance curve in FM-AFM, an amplitude–phase–distance curve in AM-AFM and an ImAFM measurement. In
contrast to FM-AFM and AM-AFM, the static probe height is constant during an ImAFM measurement and the h–A plane is explored along a path
parallel to the A axis. One should also note the amplitude jump along the AM-AFM path at a probe height of h = 30 nm.

the tip oscillation amplitude is sinusoidally modulated

between 0 and 30 nm. For the tip–surface force Fts we assume a

van-der-Waals–Derjaguin–Muller–Toporov (vdW-DMT) force

with additional exponential damping, which is defined as

(40)

where H = 2.96 · 10−7 J is the Hamaker constant, R = 10 nm is

the tip radius, γ = 2.2 · 10−7 Ns/m is the damping constant, zγ =

1.5 nm is the damping decay length and E* = 2.0 GPa is the

effective stiffness. For the numerical integration of Equation 39

we use the adaptive step-size integrator CVODE [37] with root

detection to properly treat the piecewise definition of the

tip–surface force in Equation 40. From the simulated tip motion

we determine the motion and the force envelope functions 

and  and reconstruct FI(A) and FQ(A) according to

Equation 37 and Equation 38. As shown in Figure 5 the recon-

structed curves are in excellent agreement with the curves

directly computed with Equation 34 and Equation 35 from the

model force used in the simulations.

Probing the force quadratures
The force quadratures FI and FQ are the basic input quantities

for a variety of force-reconstruction techniques [14-19]. Over

the past decade, the dominate paradigm was to consider FI and

Figure 5: The FI(A) and FQ(A) curves reconstructed from simulated tip
motion in ImAFM. The reconstructed curves are in good agreement
with the actual curves directly determined from the model force used in
the simulations.

FQ as functions of the static probe height h only, and only one

oscillation amplitude A was considered at each probe height. FI

and FQ are, however, functions of both h and A as seen in the

two-dimensional color maps shown in Figure 6 for the vdW-

DMT force with exponential damping used in the previous

section. In order to emphasize the interaction region near the

point of contact, data in the h–A plane with FI < −8 nN are

masked with white.

In both frequency-modulation AFM (FM-AFM) and amplitude-

modulation AFM (AM-AFM) FI and FQ are usually probed by

a slow variation of the probe height h with fixed oscillation
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amplitude at each height. To measure FI and FQ in FM-AFM

the oscillation frequency shift and the drive force are recorded

as the static probe height is slowly varied (frequency-shift–dis-

tance curves). Active feedback is used to adjust both the drive

power and drive frequency, to keep the response amplitude and

phase constant. The obtained frequency shifts and drive forces

can then be converted into the force quadratures [38,39] so that

the measurement corresponds to a measurement of FI and FQ

along a path parallel to the h-axis in the h–A plane (see

Figure 6).

In AM-AFM the oscillation amplitude and phase with respect to

the drive force are measured as a function of the static probe

height h (amplitude–phase–distance curves) and are then

converted into values of the force quadratures [13]. In contrast

to FM-AFM, the oscillation amplitude is free to change during

the measurement and thus the AM-AFM measurement path in

the h–A plane is more complicated. The path shown in Figure 6

was obtained by simulating the AM-AFM tip dynamics with

cvode. In the simulations we used the same cantilever and force

parameters as in the previous section, with a drive signal at only

one frequency of ωd = 300 kHz. As is often the case with

AM-AFM, the amplitude–phase–distance curve exhibits an

abrupt amplitude jump due to the existence of multiple oscilla-

tion states [40]. This instability is frequently observed in experi-

ments, and it makes the reconstruction of tip–surface forces

rather difficult.

In contrast to FM-AFM and AM-AFM, ImAFM allows for a

measurement of FI and FQ at fixed static probe height, along a

straight path parallel to the A axis in the h–A plane, as shown in

Figure 6 for the simulation of the previous section. Each of

these three measurement techniques probes the tip–surface

interaction along a different path in the h–A plane. With

ImAFM, however, the measurement can be rapidly performed

at each point of an image, while scanning with normal speed

[26], allowing for unprecedented ability to analyze the

tip–surface force while imaging. The ImAFM spectral data,

which is concentrated to a narrow band near resonance, is a

complete representation of the measurable tip motion, because

there is only noise outside this narrow frequency band. Thus the

method optimally extracts the signal for compact storage and

further analysis.

We note that the ImAFM path provides an equivalent amount

of information to that in frequency-shift–distance or

amplitude–phase–distance curves. This implies that, for a single

scan, ImAFM image information equivalent to a frequency-

shift–distance curve or an amplitude–phase–distance curve is

available in every image point. Moreover, the ImAFM measure-

ment does not suffer from amplitude jumps since the stiffness of

the cantilever resonance prevents big amplitude changes from

one single oscillation cycle to the next single oscillation in the

beat tip motion.

ImAFM approach measurements
It is possible to acquire maps of FI and FQ in the full h–A plane

with a protocol we call ImAFM approach measurements.

Similar  to  the measurement  of  f requency-shif t  or

amplitude–phase curves, the static probe height above the

surface is varied by slowly extending the z-piezo toward the

surface. However, in contrast to FM-AFM and AM-AFM

measurements, the oscillation amplitude is rapidly modulated as

the probe slowly approaches the surface. Because the height

variation is much slower (order of seconds) than the amplitude

modulation (order of milliseconds), the probe height can be

considered to be constant during each amplitude modulation. In

this case each amplitude modulation reveals the amplitude

dependence of FI and FQ at a constant probe height. From the

different probe heights FI and FQ can be reconstructed in the

full h–A plane. With FM-AFM or AM-AFM such a measure-

ment would require much longer measurement time since

multiple surface approaches with different amplitudes would be

required. With ImAFM all the data is acquired during a single

surface approach.

We use ImAFM approach curves to reconstruct FI and FQ maps

on a polystyrene (PS) polymer surface. We perform a slow

surface approach, and from the acquired data we reconstruct the

FI and FQ maps shown in Figure 7. On the h axis we show the

piezo extension since the absolute probe height cannot be

defined unambiguously in an experiment. The areas in the h–A

plane that were not explored are displayed as white areas.

The boundary to the white area in the upper part of the plots

represents the maximum oscillation achievable for the fixed

drive power. The boundary to the white area in the lower part of

the plot corresponds to the minimum oscillation amplitude

during one modulation period (one beat). This lower boundary

shows interesting variations with the piezo extension. Further

away from the surface at larger piezo extension, only positive

values of FI are achieved, which corresponds to the tip oscil-

lating in a region where the net conservative force is purely

attractive. As the surface is further approached, FI also takes on

negative values, when the net force becomes repulsive. At

probe heights between 7 and 13 nm, the strongest repulsive

force is experienced. Around h = 13 nm and below, the attrac-

tive region vanishes, which may be the result of a change in the

cantilever dynamics due to a relatively long interaction time, or

a change in the hydrodynamic damping forces due to the

surrounding air close to the sample surface. One should also

note that at this piezo extension the minimum oscillation ampli-
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Figure 7: FI(h,A) and FQ(h,A) maps reconstructed from an ImAFM approach measurements on a PS surface. The z-piezo extension corresponds to a
relative change of the probe height h above the sample surface.

tude begins to increase again. A possible artifact of the

measurement method may result in this low amplitude region, if

the motion spectrum is no longer confined to a narrow

frequency band, as assumed in the analysis.

The map of FQ characterizes the dissipative interaction between

tip and sample. The dissipative tip–surface force can be much

more complex than the conservative part of the interaction since

dissipative forces do not only depend on the instantaneous tip

position, as with the conservative force. The FQ map can

provide detailed insight into the nature of the dissipative inter-

action since the full dependence of FQ on probe height h and

oscillation amplitude A is measured. The FQ map shows a lower

level of force than the FI map and it therefore appears more

noisy, because the tip–surface interaction is predominately

conservative. The small positive values of FQ that occur far

from the surface would imply that the tip gained energy from

the interaction with the surface. This may be an artifact, but

another possible explanation is some sort of hydrodynamic

mode above the surface [41]. In both the attractive and repul-

sive region of the in-phase force FI, the quadrature force FQ is

predominantly negative and it decreases as the surface is

indented, corresponding to a increasingly dissipative tip–surface

interaction. However, the maximum dissipation does not coin-

cide with the maximum repulsive conservative force, and the

energy dissipation is largest at peak amplitude for piezo exten-

sions between 2 and 6 nm. Another interesting feature of the FI

map is the fine structure in the contact region, between h = 10

and 20 nm piezo extension. These small step-like changes of

conservative force are not present in the smooth force model

function, and could be an indication that the dissipative forces

result in small, irreversible modifications of the sample surface.

Conclusion
We presented a physical interpretation of tip motion when

described by a narrow-band frequency comb in ImAFM. We

showed by separation of time scales that the time domain signal

of a narrow-band frequency comb is completely characterized

by a complex-valued envelope function and a rapidly oscil-

lating term. The application of this time-domain picture to

ImAFM allows for the reconstruction of two force quadratures

FI and FQ as functions of the oscillation amplitude A. The quan-

tities FI and FQ can be considered as two-dimensional func-

tions, depending on both the probe height and the oscillation

amplitude. Within this framework we find a connection

between frequency-shift–distance curves in FM-AFM, ampli-

tude–phase–distance curves in AM-AFM, and ImAFM

measurements. Moreover, we introduced ImAFM approach

measurements, which allow for a rapid and complete recon-

struction of FI and FQ in the full h–A plane, providing detailed

insight into the interaction between tip and surface. We demon-

strated the reconstruction of FI and FQ maps experimentally on

a PS polymer surface. We hope that the physical interpretation

of narrow-band dynamic AFM presented here, will inspire new

force-spectroscopy methods in the future that will take advan-

tage of the high signal-to-noise ratio and the high acquisition

speed of ImAFM.

Experimental
The PS sample was spin cast from toluene solution on a silicon

oxide substrate. Both PS (Mw = 280 kDa) and toluene were

obtained from Sigma-Aldrich and used as purchased. The

measurements where performed with a Veeco Multimode II and

a Budget Sensor BS300Al-G cantilever with a resonance

frequency of f0 = 311.838 kHz, a quality factor of Q = 539.9,
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and a stiffness of kc = 29.5 N/m, which was determined by

thermal calibration [29]. We chose the two drive frequencies f1

= 311.585 kHz and f2 = 312.085 kHz symmetrically around the

resonance frequency and the drive strengths such that the free

oscillation amplitude was modulated between 0.0 and 29.7 nm.

The probe height was changed with a speed of 5.0 nm/s.
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